EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula.

نویسندگان

  • Tatiana Vernié
  • Sandra Moreau
  • Françoise de Billy
  • Julie Plet
  • Jean-Philippe Combier
  • Christian Rogers
  • Giles Oldroyd
  • Florian Frugier
  • Andreas Niebel
  • Pascal Gamas
چکیده

Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic no...

متن کامل

The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root.

Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Ince...

متن کامل

Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula

The AP2/ERF superfamily is a large, plant-specific transcription factor family that is involved in many important processes, including plant growth, development, and stress responses. Using Medicago truncatula genome information, we identified and characterized 123 putative AP2/ERF genes, which were named as MtERF1-123. These genes were classified into four families based on phylogenetic analys...

متن کامل

The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula.

The role of MtCEP1, a member of the CEP (C-terminally encoded peptide) signaling peptide family, was examined in Medicago truncatula root development. MtCEP1 was expressed in root tips, vascular tissue, and young lateral organs, and was up-regulated by low nitrogen levels and, independently, by elevated CO2. Overexpressing MtCEP1 or applying MtCEP1 peptide to roots elicited developmental phenot...

متن کامل

The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia.

The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2008